

High-fidelity Ultrasonic 3D Characterisation of Composites

Robert Smith

Professor of NDt and High Value Manufacturing, University of Bristol Past President - British Institute of NDT

- Introduction
 - NDT and Aerospace Structural Integrity
- Using NDT to characterise 3D material properties & model performance
 - 3D non-destructive characterisation
 - FE Materials Modelling
- Ply Tracking
- Summary

Introduction

NDT and Aerospace Structural Integrity

• Mechanical Testing. Strength vs damage size.

Damage Size

Source: EASA AMC 20-29 Effective: 26/07/2010

Maintenance Decisions

Engineering and Physical Sciences

Research Council

Design based on susceptibility to damage

• Design based on susceptibility to damage

• Design based on susceptibility to damage

Using NDT to characterise 3D material properties & model performance

3D non-destructive characterisation FE Materials Modelling

- Predict performance of as-manufactured component.
 - Materials model with actual 3D NDT data inputs
- Finite-element mesh created from NDT plywrinkling data.

Materials Modelling

Populate cells with 3D Fibre Angle (α,β,γ), vector field, stiffness axes 1', 2' & 3

BRISTOL 3D non-destructive characterisation

Ultrasound

THE BRITISH INSTITUTE O

• Grey level can be amplitude or phase response

12

• Quantitative 3D fibre orientation 'inversion'

 α, β – out-of-plane \uparrow γ – in-plane \uparrow Surface Heights fibre angle fibre angle

3D non-destructive characterisation

0.50 Quantitative Pseudo-3D 8 41.5 0.45 0.40 42.0 ply surface 0.35 42.5 0.30 height... 0.25 43.0 0.20 43.5 ີ່ ສ^{0.15} ອັດ.10 44.0 Height 0.05 20 Distance (mm) 70 0.00 0.05 0.10 60-<mark>∂</mark>0.15 50· Distance (mm) -0.2040--0.2530--0.30 -0.35 20 -0.4010 -0.45-0.50 n 41.5 42.0 42.5 43.0 43.5 44.0 20 0 Distance (mm) Depth (mm)

3D Vector Map of Fibre-tow orientation

- Vector Field
- Fibre-tow maps of 'streamlines' (analogy with fluid dynamics), vectors, F

0.125 mm thick plies. [45°, 0°, -45°, 90°, -45°, 0°, 45°]₃

NDT-based prediction of strength

Step: Step-the Frame: 0 Total Time: 0.000000

Miss Ningbo Xie, PhD student

.

University of BRISTOL

Simulation and modelling

Miss Ningbo Xie, PhD student

Ply tracking

......

Ultrasonic Propagation in CFRP

- CFRP
 - Ultrasonic propagation is complex
 - Interfering reflections from resin layers
 - Weak resonances
 - 6 MHz for 0.25 mm plies
 - Resonances disrupted
 - Ply thickness variations
 - Material property variations
 - Localised response

Low Reflection Coefficients (R). R peaks at resin layers - thin, so thickness-dependent R.

Ply-drop specimen

Optical Micrograph

Analytic-signal

Overlaid

BRISTOL Impact Damage - delaminations

- Defect Characterisation
 - Delaminations due to impact damage

Green: Resin layer. Red: front, back or delamination. **Note: multiple reflections are not colour coded**

 Instantaneous amplitude with Ply tracking...

100 95 90

Impact damage - delaminations

- Defect Characterisation
 - Delaminations due to impact damage
 - Red: front, back or delamination. **Note: multiple reflections are not colour coded**
- Instantaneous amplitude with Ply tracking...

Tape gaps, overlaps, wrinkling

Tape gaps and overlaps can cause wrinkling

X-ray CT data

Tape gaps, overlaps, wrinkling

Front-wall, back-wall, ply-drops

- Instantaneous amplitude with resin layers, FWE, BWE
- Note white line at peak amplitude

Tape gaps, overlaps, wrinkling

X-ray CT scan

With analytic-signal overlay

Conclusions

- Ultrasound offers:
 - 3D characterisation
 - Inversion to map 3D material properties
 - Automated creation of FE materials models
 - Prediction of performance
 - Only scale limitation is time for scan and analysis
- NDT-based FE Materials modelling offers potential benefits

